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By Stephen H. Maslen

SUMMARY

The first-order solution for the laminsgr compressible boundary-layer
flow over a flat plate at constant wall temperature is given. The
effect of slip at the wall as well as the interactlon between the
boundary-layer flow end the outer stream flow are taken into considersa~
tion. The solution is obtained explicltly in terms of the known zero
order, or continuum, solution. No assumptions regarding the Prandtl num-
ber or viscoslity-temperature law need be made. It 1s found that the
first-order solution gives a decrease in heat transfer and, for super-
sonic flow, an increase in skin friction. For subsonic flow there is no
first-order shear effect. The change in heat transfer is due to slip
end the change in friction is due to the interaction of the zero~ and
first-order velocities at the outer edge of the boundary layer.

INTRODUCTION

With very high-altitude high-speed motlon becoming of practical
interest, the behavior of ailr flow in rarefied and semirarefied gases
becomes of great importance. In this connection, as has been discussed
by Tsien (reference 1), one can define four regimes of filuid flow.
These may be termed, in order of increasing mean free path of the fluid
molecule: continuum, slip, intermediate, and free molecule flows. Con-
tinuum flow, where the mean free path of the fluid is negligible com-
pared with the boundary-leyer thickness, has been exhaustively studied
for some time, while the other regimes have not. These latter domains
differ from the continuum flow both in the form of the equations of
motion and in the boundary conditions. The change in the boundary con-
ditions sppears in the form of temperature and vélocity discontinuities
between a solld boundsry and the fluld immediately adjacent to it.

The slip regime mey be loosely defined to include flows such that
the ratio of mean free path to boundary-layer thickness (which is shown
in reference 1 to be proportional to the Mach number divided by the



2 NACA TN 2818

square root of the Reynolds number) is between 0.0l and 1. It may be
noted that this paremeter is the Knudsen number based on boundary-layer
thickness. In this regime the flow mey be defined by the Burnett equa-
tions (references 2 and 3), which represent the second spproximation to
the Boltzmen equation, the first approximstion belng the femiller
Navier-Stokes and energy equations. The boundery conditions were first
given to the corresponding degree of approximstion in reference 4, where
1t 1s shown that, in spite of the fact that the Burnett equations are of
higher order than the Navier-Stokes relations, the seme number of bound-
ary conditions are required.

Several suthors have dlscussed special problems in slip flow (ref-
erences 4 to 6, for example) such as the Couette flow between flat plates
and concentric cylinders and en incompressible boundary-lsyer and
stagnation-point flow. In references 7 to 10, slip flow over a flat
plete is discussed from another point of view by analogy with the
Rayleigh problem of en infinite plate suddenly set into steady motion
in a viscous fluid. This approach is relstively simple, but is limited
by questions of the validity of the analogy for slip flow.

In the present psper, the first-order solution of the compressible
flat-plate boundary-layer problem is found for veriable Prandtl number
and arbitrary tempersture-viscosity lew. It 1s assumed only that the
specific heats are constant. The solution is a perturbation on the
known continuum solution. Although the Burnett equations are the sppli-
ceble ones in the slip regime, these expressions are Just the familier
contlnuum equations of motlion with higher-order shear and hest-flux

termes added. These added terms are st least of order 82 (a::%%%; .
e

(A1l symbols are defined in appendix.A.) The corresponding boundary .
conditions (reference 4) contain terms of first order in . Hence, to
find the first-order effect of slip, the continuum equations of motion
may be used. These equations are subjected to the boundary-layer
assumptions and expended in powers of & +to give two sets of equationms,
one for the zero-order and the other for the first-order quantities.

The same procedure is followed with the boundary conditions. The zero-
order system is then seen to be the usual continuum boundary-layer sys-
tem. The first-order system is then solved explicltly in terms of the
zero-order quantities. For the convenlence of the reader who is prima-
rily interested 1ln the results of this investigation, the rather lengthy
mathematical detalls of the analysls heve been relegated to the appendi-
ces. The Investigation was conducted at the NACA Lewis laboratory.
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ANATYSTIS
Differentisl Equations

If it is assumed that there exists a thin boundary layer close to
the wall in the fluid, and appropriste nondimensionsl coordinstes are
introduced (appendix B}, the equations of steady motion and the equation
of state (herein assumed to be the general gas law) reduce to the famil-
lar boundary-layer equations, which are correct to order ¢ (equa-
tions (Bl) of appendix B). It may next be assumed that the velocities
and thermodynamic properties of the fluid can be expanded in powers of
the small, but nonzero, quantity €. Thus, for example,

ou + 8]-L]. + L] L] L[]

Op 4 glp 4+, . .

In order to find the differential equations governing these zero-
and first-order quantities, equations (1) are substituted into the
boundary-layer equations (Bl) and the coefficients of the zero and first
powers of & are equated to zero. The resulting two sets of relations
are equations (B2) and (B3) of appendix B. The first set contains only
zero-order terms and is identicel with the usual boundary-laeyer rela-
tions (equations (Bl)), while the other set governs the first-order
terms; 1t is the primary object of the present report to solve them sub-
Ject to the appropriaste boundsry conditions.

u

(1)
T

Boundery Conditions

The boundary conditions at the plate have been discussed in detail
by Schamberg in reference 4 (see also reference 6) and are glven as
equations (B4) of appendix B. If these are treated in the same manner
as the differential equations, that is, if they are msde nondimensionsl
and expanded in powers of €&, equating the coefficients of the zero and
first powers of €& +to zero, two sets of boundary conditions (equa-
tions (B5) and (BS)) result. Finally, conditions far from the plate
must be specified. At first glance, it might be expected that the con-
ditions are simply that the properties approach the undisturbed stream
values. To zero order, namely in the conventilonal boundary-layer
theory, this 1s nearly true; but when higher-order approximations are
desired, the mutual interaction of the boundary layer and outside stream
must be considered. If, as is the case in this report, it is desired to
use the known continuum boundary-layer solutions as the zero-order solu-
tion to the present problem, it is found that the zero-order solution is
such that, as the outside of the boundary layer is approached, all the
fluid properties spproach the undisturbed stream values except the ver-

tical velocity. This component, which is of magnitude lA/Re and is
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hence negligible to zero order, is a manifestation of the fact that the
boundary layer causes a curved surface to be presented as the effective
wall of the reletively inviscid outside stream flow. This outer flow,
which to the present spproximetion sastisfies the Prandtl-Glauert poten-
tial equation, can be solved subject to the known boundary condition on
the vertical velocity at the edge of the boundary layer (see appendix B,
equations (B8) and (B9)). The resulting axial velocity, and hence the
pressure and temperature (the outside stream remains isoenergetic to
first order) at the edge of the boundary leyer, may then be found (equa~
tions (B1O) and (Bll%). These terms are of order € for supersonic
flow and of order €%, and hence zero to the present approximastion, for
subsonic flow. It then follows that the sppropriate first-order bound-
ary condition is simply that the first-order fluid properties in the
boundary layer must reach these values (equetions (B13) and (Bl4)) at
the edge of the boundary layer. Actually, the first-order solution will
be seen to behave in such a manner that these conditions yield insuffi-
cient information to mske the solution unique. Hence a sultable added
condition must be introduced. A sufficient one is that the momentum and
displacement thicknesses be finite. It will be seen that this conditlon
effectively requires that the various fluild properties approach their
stream values exponentially.

Solution of Differential Equsations

The zero-order system (equations (B2), (B5), and (B7)) is the usual
boundary-layer system and hes been treated exhaustively (references 11
to 13) under various assumptions regarding the Prandtl number and the
viscosity-temperature relation, and its solutlon 1s partially described
in appendix B. The first-order system (equstions (B3), (B6), and (B13))
can be solved explicitly in terms of the known zero-order solution if
gimilarity is again assumed in the usual form. The detalls of the
rather involved analysis are given in sppendix B following equa-
tions (B18). The resulting solution is, with use of equations (B19)
and (B31),



NACA TN 2818 )

-
ha(x,y) = :H g (u(Tv)al AT - fn f F(t)d%
Yr(x,y) = 7_ (u(mw)al N - f b-%g f F(t)d‘a + F(i%
L 0
1, ,y) & —=— 1, _o (H_ _(_:.!l)l
(x,7) J..I:n (x,5) - °% VAT, }
(2)
where
n = y/afx
y] o
e [ #rs
202°t vl (o}
0 K quIn
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Also, it should be noted that
K = 0 for subonsic flow N
and for supersonic flow
1 o
K=- ———oue V}? 'V'(X,eo)] } (3)
Ma/y(M4-1)
Y oy '\/Ef x*
Mﬁfr(M ~1) .}

where &% 1is the zero-order displacement thickness.

From these expressionsg, the local skin friction and local heat
transfer can be found. The result is, to first order (sppendix C),
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where, again, equation (3) holds.

DISCUSSION OF RESULTS

'Tn order to see where the various terms in equations (2) and (4)
serise, it may be observed that, if there were no slip, a; and cj would
be equal to zero (see the wall boundary conditions, equations (B4), (BS5),
and (B6)), while if ‘there were no interaction between the boundary layer
and the stream outside 1t, X would be zero. Thus, for example, for
subsonic flow with no slip the entire first-order solution venishes.

With reference to equations (4), 1t may be observed that, for sub-
sonic flow, the second approximstion (first-order solution) contributes
nothing to the skin friction, while for supersonic flow this approxima-
tion has a contribution. This skin-friction effect is not due to the
slip at the well &t all but is rather simply due to the interaction
between the boundary leyer and the free stream. It therefore represents
the effect of & slightly decelerating flow, generated in this case by
the boundary layer itself, on the boundary layer. On the other hand,
the chenge in heat transfer due to the first-order solution 1s entirely
8 slip effect and there is no basic difference between the subsonic and
supersonic cases. '

Some comparison of these results with those of other authors may be
made, For incompressible flow, the present solution for lu(x,y) is
the same as that found in reference 5, and both predict zero first-order
shear (for subsonic flow). The Reylelgh problem (references 7 to 10)
also ylelds solutions predicting zero first-order shear. The heat-
transfer solution.found 4in reference 10 is incorrect because the fric-
tional dissipation which was neglected is the source of the thermal
energy involved in the first-order heat transfer. The solution given in
reference 8 for heat transfer is also lncorrect because, in the notation
of that report, as Te (adisbatic equilibrium temperature) is a func-
tion of 6 (time), the solution for Tp, from which the heat tranfer

wes found, is in error. If, however, the analysis of reference 8 were
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carried through without error, the same result for first-order heat
transfer as that found in this report would be obteined (eppendix D).

If it were desired to find only the second epproximation to the
laminar compressible boundary layer for constant wall temperature,
assuming no slip (see, for comparison, reference 14, where this problem
is consldered for the case of incompressible flow), the solutions
already obtalned would apply except that the factors a; and cq

appearing in the solutions (equations (2) and (4)) introduced by the
slip conditions would in this case be set equal to zero. In this con-
nection, it may be observed that, when, at the start of the analysis,
the Navier-Stokes equations were expanded in powers of &, only even
powers of €& appeared. Also the wall boundary conditions involve no
odd powers of ¢, and in fact are, except for the zero-order tempersture,
homogeneous. A superficial observation of the conditions to be applied
at the outside of the boundary layer would perhaps lead one to expect
that these also were, when expanded, independent of odd powers of ¢
(and would in fact be homogeneous except for the zero-order terms) and.
that therefore it would be proper to solve the problem by expanding in
powers of €2, That this is not the case, at least for supersonic flow,
has been shown here and the reason lies entirely in the conditions which
arise in matching the boundary lasyer with the outside, essentislly
inviscid, streamn.

NUMERICAL RESULTIS

The first-order skin friction and heat transfer may be readily cal-
culated provided the zero-order skin friction, heat transfer, and dis-
placement thickness are known. The date of reference 13 have been used
a8 the known zero-order solution becasuse they are the best avallable
continuum solution of the flat-plate laminar boundary-layer problem for
high-speed flow. The notation of reference 13 1ls related to the present
terminology by the following relations:
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Present report|Reference 13
~2KMaf v (M2-1) %; Reg
T* Ts
T.* Ty
Te* Iy
O(thfﬁg;) (°f"J§E)8
M M
) )
W )|

The results of the calculation are presented in table I, which is
to be used with equetions (4), together with, for comparison, the zero-
order solutions as given in reference 13. For computational purposes,
a; and ¢y were taken as 1.253 and 2.870, respectively, corresponding

" to values of the Maxwell reflection coefficient of 1.0 and of the accom-
modation coefficient of 0.9 (reference 6). Computations are shown for
an ambient stresm temperature T * of 400° R, which is fairly typical

of hlgh-altitude flight. The quantity &y, 1is, in free air, for a
stendard stmosphere (reference 15), given by

€y = __—l:/%{ = ,\/-—Mx; &(H) (5)

where H 1s the altitude. The variation of o«(E) with altitude is
shown in figure 1. Thus, for example, at an altitule of 200,000 feet,
if the Mach number is 10, the plate temperature is 1200° R, and

x¥ = 1 foot, the first-order solution shows a l0-percent increase in
the shear and the same amount of decrease in the heat transfer. At
300,000 feet and the seme Mach number, temperature, and length, the
firsgt-order solutlion indicates 60-percent increase in shear and s siml-
lar decrease in heat transfer. Of course, in this latter case, &, is

nearly one half and is certainly too large for the theory presented
herein to glve more than a qualitative answer.
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CONCLUDING REMARKS

The first-order boundery-layer solution for a flaet plate at con-
stant temperature has been calculated for high-speed motion in a semi-
rarefied gas. There are actually two effects involved. One 1s the
effect of slip itself, as reflected in the boundary conditions at the
wall, and the other is a result of the interaction between the boundary
layer snd the stream outside it. These two effects are independent of
each other and the effects in the latter case are not the same in the
subsonic and supersonic regimes. The slip causes a decrease in the heat
transfer at the wall but has no effect on the shear to first order, while
the second effect causes, for supersonic flow, an increase in the shear
and does not affect the heat transfer. For subsonlic flow, the second
effect causes no change in either the shear or heat transfer to first

order.

Lewis Flight Propulsion Leborstory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 6, 1952
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

ByA B A,

a1

by,bp,bz

Cy

constants of integration

Qfg-ﬁ%?, where 8 is Maxwelll!s reflection coefficient

(reference 6)

2 Nx 1im %v(x,n)

N>
constants
local skin-friction coefficient
specific heat at cox‘lsta.nt pressure

1

2 —
2\ (1) (=) (23-c <
1) pr) \2 = ) where c¢ 1is the accommodation coef-

ficient (reference 6)
functions defined by equetions (B26) and (B3L)
function defined by equation (D4)

altitude, ft

¥ 2
constant, -bzd— lim  AfX %v(x,y)
-1 ae

cheracteristic length, say, length of plate
1*/L

quantity defined by equation (DS), approximstely the molec-
ular mean free path

Mach number of undisturbed stream

m* /L
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m-)(-
Nuy
P

P*

Re

Rey

r,s,t
220

quantity defined by equation (D5)

local Nusselt number

nondimensional pressure, P¥/P¥

pressure

Prandtl number in undisturbed stream

gas constant

Reynolds number based on giracteristic length and undis-
e

turbed stream values, —x

PRXT

local Reynolds mumber along plate, —u*—

dummy veriasbles

function defined by equation (D4)
nondimensional temperature, T*/T¥
£/1%,

T;/j:f_

temperature

continuum adiasbatic wall temperature

specified wall temperature

*
nondimensional cartesian velocitles; u = %, v = %—: a[Re
-] -]

cartesian velocities, u* belng parallel to the plate and
v*¥ normal to the plate

nondimensional certesian coordinates; x = x*/L, y = % f\fRe

cartesian coordinstes, x* being parasllel to the plate and
y* normal %o the plate
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function of alti'bud? defined by equation (5) and
reference 15, rel/ 2

function defined by equations (B19) and (B31)
ratlio of specific heats

displacement thickness

sllp parsmeter, M_ﬁ_d_%
MAY, / Q[Rex

time

v/ N

nomentum thickness

nondimensional heat conductivity, M/

(g%%?)m=qr

heat conductivity

nondimensionsal viscosity, u*/ pX

Qﬂ&!l

dﬂ’)T=°T
(22
ar? /o op
viscosity
function defined by equations (B16), (B19), and (B31)
nondimensional density, p*/p%
density
function defined by equations (B19) and (B31)

shear
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&,0 veloclty potentials

Subscripts:

o undisturbed stream

B streem conditions outside boundary layer

x,¥,0%,q pertial derivatives with respect to respective coordinste

except for Re,, &,, and Nu,, which are defined elsewhere

Superscript:
* physical quantity
Presuperscript:

0,1 zero and first epproximstions, respectively
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APPENDIX B

ANALYSIS
The Differential Equetlions and Bouhdary Conditions
On applicetion of the boundary-layer assumptions and Introduction

of nondimensional coordinates, the equations of steady motion and the
general ges law reduce to these familier boundaery-layer equations, cor-

rect to order e,

(pu)y + (pv)y =0 w

_lM"z' Py + p(uugtvuy) - (nuy)y = 0
T

Py =0 } (BL)
-1 1 2 2
= uPy - = (N - =
- % p(u.Tx+va) = ( Ty) + (y-1)M by 0

P = pT o

In the transformations involved the coordinate and veloclty normal to
the wall are multiplied by 1/1/§—. Thus the physical and veloclty
fields are stretched in one direction, namely, across the boundary layer.
This is, indeed, Jjust the usual boundary-layer procedure. If equa-
tions (1) are substituted into equations (BlL), the resulting expres-
slons are expanded, and the coefficients of the zero and first powers

of €& equated to zero, two sets of equations result. These are

Cealy + (o) = 0 w
;iz on + Op(ououx+°v°uy) _ (ououy)y =0
° =0 }(32)
y
T-%l %%, - (T %v0) + = (AT ) + (r-1 °u°uy2 =0
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(PptutlpOu), + (Cotvtotv)y = h

%2_ J‘Px + op(oulux +lu°ux+°vluy+lvouy) + lp (ououx +°v°uy) _ (o“luy s U-y)y =0
T

T-l (l Pyt oulp ) - p( u T +u T +v° Ty+pvlT ) - lp(ouoTx+-ovoTy) +
lo =2 1 _
xlT+kT +(T-1)M(|J.u_y+2uuyu_y)_
1P=p1T+lpoT J
(B3)

The boundary conditions at the plate are (references 4 and 6), to
first order,

v¥{x%,0) = 0 \
w*(x*,0) = % (alm g;** + 3 gz:)]

) r* ¥
T*(x%,0) = T, + I:PP_: (clﬂ/ﬁF L g5)] )

where the terms in brackets sre evalusted in terms of conditions in the
fluid adjacent to the wsall.

(B4)

e

If these are written in terms of the dimensionless quantities, there
follows, correct to order e,

v(x,0) = 0

u(x,0) = s(% 81 ~/Tyy uy)

"
T(x,0) = T + c(—ls c1 /T, TQ

These relations mey next be expanded in powers of €& +o give the two
sets of boundary conditions at the wall. These are
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o f
(o] »
u(x,0) =0 (B5)
o}
T(x,0) = Ty
lv(x, 0) =0
1 op. o)
u(x,0) = on a] VT Uy (B6)
1 ou o]
T(x,0) = op C1 -,/Tw_ Ty
Equations (BS) are the zero-order or continuum boundary conditionms,
while equations (Bﬁ) govern the first-order quantlitles.
Finally, to complete the definition of .the problem, conditions far
from the plate must be specified. Because it 1s desired that the zero-
order problem be the usual continuum one, and because this introduces
no inconsistency, the zero-order boundary conditlons may be immedistely
specifled. These are 5

u(x,=) = °P(x,=) = “T(x,%) =1 (B7)

If it 1s now noted that the zero-order system (completely specified
by equations (B2), (B5), and (B7)) is actually the desired familiar con-
tinuum one, it is then known that ~

°v(x,%) = % V% (88)

where b is & known constant. The outside stream satisfles the Prandtl-
Glauert relation

(l'Mz) (g{*x* + q)y*y* =0 (Bg)

where ¢ 1s the perturbation (from the undisturbed stream) velocity

potential. The solution of equation (B9) subject to condition (BS)

applied et the edge of the boundary layer will be found first for super- i
sonic flow. The epplicable general solutlion of egquation (B9) is that @

ig & function of (x* - +/M2-1 y*). Thus
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or, in nondimensional coordinstes,

u_s-l=-—-————=§ X -

T Y

= & (x) E. + O(GEI

Then, with use of equations (1), (B7), and (B8), at the edge of the
boundary layer

1
ug = - 2 (B10)

2M-/r (M2-1)x

Consideration will now be given to subsonic flow. A solution of
equation (BQ) corresponding to a linear source distribution of strength

varying as l/ -\/x'-": ylelds

x*2 - (M2-1)y*2 - x*

= - by+/2 + up
: I\j - (M2-1)y"*2

v [-\/x*z - (Mz-l)y')('2 + X
= 2
’——l— ) bl '\/—V x*z - (Mz—l)y*z

or, in nondimensionsl coordinstes,

\/xz'Mz—élszyz'x by &7
T l 1-M° [1+0(s]

2 _ MA-1 e252 M

(B11)
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5
2 M1 2.2
evx TMZ bl
—x =142 = 1+0(€)
M~/r(1-M2) 2 . Mzél 62,2 Vx
M N

This last reletion is of the seme form as equaetion (B8} and hence
these two expressions may be considered to define the desired flow out-
gide the boundary layer for subsonlc flow. Thus, by the preceding
equations, bl is of order €. Although by is proportional to e/M,

which may appesrently be large if M approaches zero, it is seen from

the definition of € that bl is proportional to 1/ -\/Re s which must
be small in order that the boundary-layer assumption will hold in the
first place. Hence, ug-1 1s of order ¢€”. Therefore, for subsonic
flow,

. =0 (B12)

The pressure and tempersture perturbations will now be described.
For isentroplc flow, which condition is satisfied to the present epproxi-
metion by the outside stream,

P, - 1= - (r-1)M%(ug-1)

g8

P, - 1= - yM(ug-1)

8

Thus, for the first-order boundary conditlons at the edge of the
boundary layer,

N
lu(x)") = %
To(x,) = - (Tj_MZK ' (B13)
X
:LP(X}") = - %E
. J

where
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K =0 for subsonlic flow

(B14)
-b

_ _ -1
2M~/T(MB-1)  M+/y(MB-1)

K

E/E ov(x,w)] for supersonic

Tlow

In practical calculations, when the zero-order solutlon is known,
K msy be found in the following way:

ek -/Re *
K= - ___l__ _\/'J-{- -\/'IE 8 = - X as
M~/v (M2-1) ( “_f) M-l (2-1) &

where g¥ is the continuum displacement thickness and is known to vary

as -Vx'. Hence,
x5 (B15)
I y——————— 1
oM~/r(Me-1) ¥ _

K=

Solution of Differentisl Equations

First, the zero-order system (equations (B2), (B5), and (B7)) may
be considered. From the third of equations (BZ) end the boundary con-
dition equation (B7), °P(x,y) = 1. Now, similarity may be assumed in
the usuel manner and there can be written, in the menner of Emmons and
Brainerd (reference 11):

\

u(x,y) = %u(n)

(B16)

Ov(x,¥) zj/;',;' E1°u(n) ; °€(n):|

T

OT(XJ Y)

°1(n) J
vhere 1 = y/+/x%.
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Then the system becomes the familiar one
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%y (°5) A
°r ~\°r
y
%%y + 2°7(°uuy), = 0 ; (B17)
% 2 000 00, 2 _
o +ﬁ(xmn)n+2(r-l) DE —0)
®u(0) = °¥(0) = 0 A
°0(0) = T, y (B18)
“u(w) = (=) = 1

/

This system or its equivalent has been solved by a number of
investigators under various assumptions regarding the Prandtl number
and the tempersture-viscosity law (see, for example, references 11 to

13) and, hence, need not be considered further.

Next, the first-order system (equations (B3), (B6), end (Bl3)) may

be considered.
tions (Bl3) it follows immediately that

Eeld

VE

lP(X:Y) =

From the third of equations (B3) and the third of equa-

Next, analogously with equations (Bl6), and following Karmén's
suggestion (reference 16), it may be assumed that the first-order

quantlties have the form

1u(>§,y) = -5_— Yo(n)
Mv(xyy) = & [ten) - Leta])
Yp(x,y) = == 18(n)

-/x

3

e

(B19)
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and, hence, from the last of equations (B3),

1
Yo(x,y) = - -——-%f———- KeMe + aﬁﬁﬂl
~/x T() T(n)

Also, since the viscosity p and heat conductivity N are func-

tions of temperature alone, lu. and 1A msy be found by expanding u
and A in g Taylor series. Thus,

u(°T+slT) = u(°r) + e (%2)-) =% + Elp,

o)

T="T
Therefore,
N 1 3
h(x,y) = L) M
.\/E
Similarly, ? (B20)
1
lx(x;Y) = _B_iﬂ)_ )‘T
EE
where

Now the expressions given by equations (B19) and (B20) may be put into
the sppropriate equations (B3), (B6), and (B13) to yield this system
for the first-order terms.
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B )
% % (gnf ﬁﬂ )
e (mf +38)

'_.T

o 1 o r

1
wo n 1L o B 1, o ol _
5 +O +°T g-gé{rmz+§)]+2(ﬁu.run+ p.on)n-K—O>

-

o1, °gs °r 1
wp TI,,_OILEE_% GCYMZ +o_ﬂ)] +:—r(°xla>m+(*r-l) Oura +
T

Z(Y-l)Mz(lBuT%nz +2°“o“nl°n) -0 7
(B21)
Y5o) = o A
15(0) = %uay /T, °uy(0)
*8(0) = ®uey VT, °1,(0) > (B22)
lo(w) = K

(=) = - (r-1)PK

Equations (BZl) mey be integrated explicitly in terms of the zero-
order solution. From the first of equations (B2l) and the boundary con-
ditions on ©£(n) and TE(n) (equations (B18) and (B22)), there follows

immediately
1
Ye(n) = % gl + 5= 2 (B23)

With this result the last two equetions of equations (B21) can be
integrated once to give

o]
Ei Lo+ Z(lﬁp.Tou.q +°ulcn) = 2A + Kn
- 2(r-1)M2% - (y-1)M%K°un

(o] 1 24A
2 1 - 200 1 2
—£°T B+ 5 (N B), + 20r-1)M" “uu fo = 5=

(B24)
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It can readily be verified that a solution of the homogeneous equations
corresponding to equations (B24) is

Ya(n)

%u, (n)

a(n)

°, (n)

and, hence, 1ln genersl,

Yo(n) = %, a1 + | £(t)at
L 0 i
- -z ? (B25)
yl
ls(n) = °TTl Ay + f£(t)at| + F{n)

(e T

If these expressions are put into equations (B24), the result is

(Ol.l.f+|.l.]3F)ou.,q = A + %Tl
o N N A
E 0 2 20 K
'Z—OEI' + P'?TL F + P ( Tnf'l‘Fn) = Pr (Y-l)M U.(A + %‘)

These equations mey be solved to glve

f

n &
_ f %epr at f %pr ar
o o 2°9°7 o0p o 2°2°T
F(T]) = O_i e <A3 +\]:‘ Ez - (A + K-zu) QT‘]-)MZPI‘OU + opp\:l) e = at > (326)

W

-

and

(n)
£(n) = A2K2/2 - ufz
wug M
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It may be noted that, in the commonly assumed case of constant
Prandtl number, %y = O\ and hence

4l
%Pr at
0 ZOXOT 0,0, Pr
e Qe
(o °, )Pr
IJ- ‘n 'n=0

In order to apply the boundary conditions for large 1, it is neces-

sary to know the behavior of lc(n) and lB(n) for large n. It is
shown in sppendix E (thelresult is derived for only lc(n) vhile a simi-
ler enalysis holds for ~B(n)) that for large 0

! \

ld(n) =K + (A + %?) Oun a . . exponentially
0

ououn decaying terms

: ?

La(n) = - (r-1)fk +l}2- (Y_l)MZPr(A . %E)J (Ououn Pr : at = .

%u(®uu
]
J

(B27)

exponentially decaying terms

and in the limit

lO'(-)

lrs(--)

K

- (v-1)MK

Thus for all values of the constants of integration, the last two bound-
ary conditions of equations (BZZ) are satisfied. Now the displacement
and momentum thicknesses, 5% and 6, respectively, may be considered.
These are, in nondimensional coordinates where the subscript s refers
to stream values, '
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. 8%= A (pgug-pu)dy = -ﬁj; (pgug-pu)dn

(-]

6 = pu(ug-u)dy = ﬁ£ pu(ug-u)dn
0]

The contribution of the first-order slip term is

-J_f [lp ug + %pg u (lp°u+° lu)]dn )

25

) (m28)

A8 = +fx f [(lp°u+°plu) (Oug-Cu) + °p°u(lus-lu)]d'q )
0]

In evalusting these integrals, equetions (BZ?) can be used because all
that i1s desired is to find the conditions for them to be finite. The
exponentiaelly vanishing terms can contribute only finite amounts to the

integrals. It then follows (see sppendix F) that in order for
A5 to remain finite,

A% and

(B29)

Finally, the conditions at the wall (equations (B22)) must be spplied.

From these there follows

& = “u(Ty)ay Ty
Ay = A(Ty) (o1 -8 ) /T, OTn(0)

(B30)

If equations (B26), (B29), and (B30) are put into equation (B25), there

is obtained, finslly,
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26
. )
1 o |o X b-t Hp
o(n) = "u |"w(T )a.+/T. -3 at -f — P(t)at
n wa'l W 2 0 ououn 0 oy
yl
N
1 o, o) K b=t T
B(n) = ", Pu(T e VT, - 3 My dt-f s= F(t)atf +F(n)
W 0 M
and
1 o lB
£(n) = E(KYMZ + 5-5)
>(le)
where
g
} %pr at [
o Jo 2°¥r
F(n) = e § OM(Ty) (e1-89 )T OT(0) -
\ &
o h
EPr dr
i 0 2O%\°r
OXOT
-Iz-{- (n-b) (Y-l)MzProu + 11& v }
0 uu u
J

These four equations constitute the solution of the first-order boundary-
layer problem for slip flow when the wall has a constent specified tem-

perature T:
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APPENDIX C

SKIN FRICTION AND HEAT TRANSFER

The local skin friction and local heat transfer at the wall are
given by

NRey cf = l\/ﬁe_:c%'xi% = 2(buy) o
Y

2E°u°un + sx(uTlBOun + oulcr.qi' 70

XN OT* 1 1
W/ pfRex = [xﬁ(T’é"'-’?}) (ay*)] ¥=0 (I\/Rex) T Ty (XT")n=o

1

Ta-Ty

These become, with use of equations (B24) and the boundery conditions,

cp l\/ﬁe—x____ O(Cf !\/Rex) + sxl(cf q/Rex) = [zopoun + Sx(ZMIV‘}"(Mz - l) KZ)]TFO

MLy + e O BTy + O"an)]n—o

o 1
Nuy Nuy Nuy o 0 o —
"ﬁ{— ) (’\/Ee—x>+ sx( Rex) T } Tw{ XOT” * i l:-al(T i l}MZPr( * un)z Tw:l}ﬂ=0
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APPENDIX D

SOLUTION OF THE RAYLEIGH PROBLEM FOR FIRST-ORDER SLIP

The mathemetical statement of the Reyleigh problem for slip in an
incompressible fluid is (reference 8) (in the present statement of the
problem it is assumed, as in reference 9, that the fluid rather than the
plate is suddenly accelerated)

U - O Weyw
u*(¢*,0) = Z*(u§*)y=0
> (p1)
u*(g*:°) = u¥,
u*(o:Y*) = u¥ )
% X* * ¥ - *
Te* - p¥ey TY*V* = picP (UY*)Z h
LC AL AL A
2
(L% ,) = T (2]
T*(O;y*) = Tt _)

Equations (D1) cen be solved exactly. If (* is chosen such that
§* = x*/O.SéSui, in order that the zero-order shear match the Blasius

solution, there results, in nondimensional coordinates,

2
lA/Re 0.346 1°Re
u(x,y) = erf 0.294y + e .erfe 0.294y + JE3
Ax A/x  0.58814/Re

from which there can be obtained

cpafFey = 0.664 + O( &)

which is the result obtained in references 8 and 9, and which agrees
with equation (4) of this report for subsonic flow.
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Next, equations (D2) cen be solved exasctly by standard methods.

The solution is, in nondimensional coordinates,

T(x,y) = T, - 8(x,y) +

where

8(t,0)a(x-t,y) dt

(D3)

\

- _ 0.346Pr(zr-y)2
2 % 2 4(x-58)
-1 )M°Pr e dr
S(x,y) =T -l+—§L—; ds | [(sr):l
’ W 2 Afx(0. 346 Jr®s Ne=r]
0 -
and
. _ 0.346Pry®
0.959 ix
G(x,y) = -
mA/RePrx
2
2.6888 _ mARe  0.346m"RePr, erfc(o.294ydrr . Nz )
mfRePr NE 0.588m 4/RePr. )
(D)
From this, to order 1 (1afRe is of the same order as ¢ ),
My _ 7 1 [(l—Tw+B) (0.332) AfPT - (0.332)% L (r-1)Ma for VRe]
:\fR_e;{ a~Ty X
However, if equations (D1) and (B4) are compared, there follows:
7,_* _ 7= ¥ all\/Rﬁ’E _ ealf\/TW
L~ " L Re
(Ds)
m* 3 _ .L"i Cl RT Scl’\’ TW
T " L T N®e

Then
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Nuy

q/Rex T T

a.:'LTv [(MWB) (0.352) afEr - o 4m (r-1)4%Pr(0.352)° ’\/@
(D6)

where
2(r-1ME /'—
B = cos
nVZ/

The zero-order portion of equation (D6} has been essentislly found
by Emmons (reference 17), who hes pointed out thet, except for Pr =1,
this solution is not quite the same as that found from the usual
boundary-layer theory. The first-order term in equation (D8}, however,
exactly matches the corresponding term of equation (4) of the present
report.
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APPENDIX E

BEFAVIOR OF Yo(n) FOR ILARGE 1

From equations (B25) and (B26),

tgp;_- ar Sxpr ae
'v[ 2o °n by 220
1 (" * %)“’ ] X 2\ e ar
a(n) = °n“ Ayt o - 5 ° Ag + Ay - (A + 'E‘) (r - 1)Hzpr°urr+°u°uq —_— as
0 0

First, 1t is well-known that the behavior of the zero-order solution
is such that, as 17 >,

Ou(n) +1

_blnz
Ou(n) - 1+0 as e (by >0)

2
u.n* O s e

(E2)

OT(q) +1
Pr
O, (n) >0 es (°up)

%(n)-n -1
Most of the terms in equation (El) will be shown to vanish exponen-
tially. For the terms multiplied by A; and Az, this follows immedi-

ately by the use of equation (E2). Some of the other terms will be seen
to venish exponentislly if equastion (E1) is multiplied by e'! and the
product is shown to vanish. The terms in the last integral mey be con-

n
sidered., Although e Ou,n('q) <+0, the integral is infinite and hence the

product i1s an indeterminate form, and it is appropriate to apply
1'Hospital's rule. Thus,
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- OrPr ds rgrr ds
1 20N o1 Nt . or0m 2% Op
Yo Kr o, Mo e
= T 9 = - = -
I, :;inl e u°u.nJ" o ° j Ap (A+ 2)((r 1)Mepr uers o ) o ar [ at
K o 0
1 b orpr ar
. Sgpr 4t _ElgLo_T
- ) o zolOT "1 OKOT 2Y\
e E bz Kt M2 n)e
- h' 3 Ao - (A + 28 ~ 1)MPrCuPr dt
}]in:- (- l|+2° q)"he 2 ( ¥ Z)GT ) +°l’~°ﬂ-n) op
W

[

Agein, the integral approaches infinity and its coefficient is zero.
Thus

A\
el Oy ke Az - A+ Xn (y~-1)M2PrOu + —1
i 0y 2 OP-QLL,]

2
e TSN e ke
2007\ 29uCr 1 ZOIJZOT it VAT

By the use of equations (E2), it i1s seen that the denominator

1. (1D 2
approsaches > + 5 1 plus smaller terms. The numerator contalins

only terms of the form el °u.n, el OTT], nel °u.n, and fe’l OT,], all of
which venish. Hence, finally, I; =0 and therefore the last term in

equation (El) venishes exponentially. Next, the term involving K in
the first integral is considered. This can be written

n 1’]OO
oy K b, | %),
2 Yn 2 0,0 o 2 *
iy (Cuou,)
0 0

n(oo

(°2°un) > (1 - 110? OT) dt

(E3)

0
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The last integral can be shown to vanlsh exponentially.

- B y
0 0
I = lim (°u°u.,]) el LE—UT]LTZ[ (1 - mg;bl) at
= (ououn) E
0
= 1linm “woun e f-og/20u0r 1 - 2Z(n-b)
e OE/ZOIJ.OT -1 OLJ.O'LLn og

But, by equation (E2),

1im | —E/226% 00T}
R % /20poT ~ 1 O

U o]
Iz = 3—1_-":2 %‘ (o—i - (ﬂ-b)):\

This is again an indeterminate form. Therefore,

) I3=1m[$(°—u-]):l+o
noel STV AOT

Then, when these results are used and the indicated integration in equa-
tion (E3) is carried out, it follows that, for large values of 1,

Therefore,

dt

lcr(n) =K +(A + —EK) Oun S + exponentially vanishing terms
W

0

Finglly, it cen be shown that as 1 epproaches infinity, the term
in this expression involving the integrel vanishes as l/n. Hence,

lo-(eo) =K
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APPENDIX F

BOUNDARY CONDITIONS AT INFINITY

Consideration will now be given to the expression for A6 1in equa-

tion (B28). TFrom the form of the solution, the term (1p%u+ptu) 1s

bounded in absolute value by some constant, bo. Then, with the knowledge

that ouB =1 and that ‘u - Ous is always nonnegative,

f (oplu+lp°u)(°us-°u)d:q <bg f (1-Pu)an
0 0

which is finite. The remaining term in A9 is, if equations (B19) and
(B27) are used,

w t
_ bK %1 o ds
I, = v/x (A + T) j(; -O—T- uy j; 5,00 at (F1)

But
N
° ds
u o
lim \n == Un 5o = 2
N T 0 Kup
and is always such that, for some bz,
Y
o ds
"35 uy , 50 >bz >0 if . >1

WU

Hence,

-4

d b
I4>-\/§(A+b2£) by X {.:ﬁ(A+Z_K)b5lim(lnn)

n-e

Therefore, A9 is only bounded if

A= - (F2)
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Now, if equation (F2) is used and equations (B27) are put into the expres-
sion for AS¥* (equation (B28)), the result is

(-]

L5 = S L K ( - ;%) +K (?gél) (1 + (r-l)M? ;%) an +

v 0../0 O (FT T
u("uup)
Orp f n(

o o opoun)Pr

The first integral is finite because its integrand approaches zero
exponentially. If the same procedure is observed as in the case of the
expression in equation (Fl), it follows that the second integral is
infinite and, therefore, A must be zero in order that A% be finite.
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TABLE I - VARTATION OF SKIN FRICTION AND HEAT TRANSFER

WITH WALL TEMPERATURE AND MACH NUMBER FOR NOMINAL

STREAM STATIC TEMPERATURE OF 400° R

v | a0 | lepvEeg) | (ceRog) | (Ne/v/Eey) [ (Hu//Roy)
(R)
1182] 4.55 0.591 0.958 0.311 0.881
6.31 572 .738 .319 5325
9.70 .538 .684 .325 417
14.83 481 .752 313 321
2246| 6.68 0.531 1.460 0.312 1.356
10.20 .503 1.085 319 .640
15.50 461 0.967 .305 450

“!ﬂ:ﬂ,ﬂ"
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FPigure 1. - Variation with altitude of a(H) for use in
equation (5).

NACA - Langley Field, Va.



